Combinatorics, 2016 Fall, USTC

Outlines in Week 1

2016.9.6

Combinatorics

1.Basic
2.Graph Theory
3.Extrenal Combinatorics

Some notations

- Write $[n]=\{1,2, \ldots, n\}$
- For set $X,|X|=\#$ elements in X
- $2^{X}=\{A: A \subseteq X\}$, So $2^{[n]}=\{$ all sets of $[n]\}$
- Fact 1. $\left|2^{X}\right|=2^{|X|}$
- $\binom{X}{k}=\{A: A \subseteq X,|A|=k\}$
- Fact 2. Let $|X|=n$, then

$$
\left|\binom{X}{k}\right|=\frac{n!}{k!(n-k)!}=\binom{n}{k}
$$

binomial coefficient

- Remark. $\binom{n}{k}$ stands for the number of selections of size k out of n distinct objects. For $n<k$, let $\binom{n}{k}=0,\binom{n}{0}=1$

Properties on Binomial coefficient

- $\binom{n}{k}=\binom{n}{n-k}$ for $k \leqslant n$
- $\binom{n+1}{k+1}=\binom{n}{k+1}+\binom{n}{k}$

Combinatorial proof?

- Pascal triangle
- Fact 3. The number of integer solutions $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $x_{1}+x_{2}+\ldots+x_{n}=k$, where $x_{i} \in\{0,1\}$, is $\binom{n}{k}$
- Fact 4. The number of integer solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $x_{1}+x_{2}+\ldots+x_{n}=k$, where $x_{i}>0$, is $\binom{n+k-1}{n-1}$

Counting functions

- Let X, Y be sets such that $|X|=n, Y=[r]$

Let $X^{Y}=\{$ all functions $f: Y \rightarrow X\}$

- Claim 1. $\left|X^{Y}\right|=|X|^{|Y|}=n^{r}$
- Claim 2. There are $(n)_{r}$ injections $f: Y \rightarrow X$, where $n \geqslant r$
$\Rightarrow \#$ of such strings $=n(n-1) \ldots(n-r+1)=(n)_{r}$
- Definition. (The Stirling number of the 2nd kind)

Let $S(r, n)$ be the number of partitions of $[r]$ into n unordered non-empty subsets
i.e. $S(\mathrm{r}, 1)=1, \mathrm{~S}(3,2)=3, \mathrm{~S}(4,2)=7$

- Exercise. $\mathrm{S}(\mathrm{r}, 2)=\frac{1}{2} \sum_{i=1}^{r-1}\binom{r}{i}=\frac{1}{2}\binom{r}{2-2}=\binom{r-1}{2-1}$
- Thm. Let $r \geqslant n$, then \# surjection $f: Y \rightarrow X=S(r, n) \cdot n$!

2016.9.8

Binomial Thm

- Consider a polynomial $f(x)$. Let $\left[x^{k}\right] f$ be the coefficient of the term x^{k} in $f(x)$.
i.e. $f(x)=3+2 x-10 x^{5} \Rightarrow\left[x^{4}\right] f=0$
- Exercise 1. How many ways to form 16 cents, given 2 dimes, 3 nickels and 6 pennies?

To see this, often multiplying out the parenthesis, each term x^{16} is formed by multiplying some $x^{i_{1}}$ in 1st factor, some $x^{i_{2}}$ in 2 nd factor and $x^{i_{3}}$ in 3 rd factor with $i_{1}+i_{2}+i_{3}=16$, and each term x^{16} will contribute 1 to $\left[x^{16}\right] f$. This finishes the proof.

- Fact 1. For $j=1,2, \ldots, n$, let $f_{j}(x)=\sum_{k \in I_{j}} x^{k}$ where I_{j} is a set of non-negative integers, and let $f(x)=\Pi_{j=1}^{n} f_{j}(x)$. Then, $\left[x^{k}\right] f$ equals the number of solutions $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ to $i_{1}+i_{2}+\ldots+i_{n}=k$ where $i_{j} \in I_{j}$
- Fact 2. Let f_{1}, \ldots, f_{n} be polynomials and $f=f_{1} f_{1} \ldots f_{n}$. Then,

$$
\left[x^{k}\right] f=\sum_{i_{1}+i_{2}+\ldots+i_{n}=k, i_{j} \geqslant 0}\left(\left[x^{i_{1}}\right] f_{1}\right)\left(\left[x^{i_{2}}\right] f_{2}\right) \ldots\left(\left[x^{i_{n}}\right] f_{n}\right)
$$

- Binomial Thm. For \forall positive integer n and \forall real x,

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

- Exercise 2. $\sum_{i=0}^{n}\binom{n}{i}^{2}=\binom{2 n}{n}$
- Exercise 3. $\sum_{k=o d d, 0 \leqslant k \leqslant n}\binom{n}{k}=\sum_{k=e v e n, 0 \leqslant k \leqslant n}\binom{n}{k}=2^{n-1}$
- Exercise 4. $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$
- Exercise 5. (Vandermonde's Convolution Thm): $\forall n, m, k \geqslant 0,\binom{n+m}{k}=\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j}$

Estimating

- Thm. For $\forall n \geqslant 1, e\left(\frac{n}{e}\right)^{n} \leqslant n!\leqslant e n\left(\frac{n}{e}\right)^{n}$

$$
\begin{aligned}
& \Rightarrow(n-1)!\leqslant e^{n l g n-n+1}=e\left(\frac{n}{e}\right)^{n} \\
& \Rightarrow n!\leqslant n e\left(\frac{n}{e}\right)^{n}
\end{aligned}
$$

The prove of lower bound is simple, which is left as an exercise.

- Recall(Stirling formula): $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ where $f(n) \sim g(n)$ means $\lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)}=1$
- Exercise. $n!\leqslant e \sqrt{n}\left(\frac{n}{e}\right)^{n}$
- Fact. If n is even, $\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{\frac{n}{2}}>\binom{n}{\frac{n}{2}+1}>\ldots>\binom{n}{n}$

If n is odd, $\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}=\binom{n}{\left[\frac{n}{2}\right\rceil}>\ldots>\binom{n}{n}$

- Corollary. $\frac{2^{n}}{n+1} \leqslant\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor} \leqslant 2^{n}$
- Remark. By Stirling formula $\binom{n}{\frac{n}{2}} \sim \sqrt{\frac{2}{\pi}} \cdot \frac{2^{n}}{\sqrt{n}}$
- Thm. For $\forall 1 \leqslant k \leqslant n,\left(\frac{n}{k}\right)^{k} \leqslant\binom{ n}{k} \leqslant\left(\frac{e n}{k}\right)^{k}$

